УДК 656.074

С.М. Резер, доктор технических наук, профессор, президент Некоммерческого партнёрства «Гильдия экспедиторов»

e-mail: guilldexp@yandex.ru

О.Н. Ларин, доктор технических наук, профессор, ведущий научный сотрудник, ФГНБУ «Российский институт стратегических исследований»

e-mail: larin on@mail.ru

Ф. Венде, кандидат технических наук, заведующий кафедрой логистики, ФГБОУ ВО «Московский автомобильно-дорожный государственный технический университет» e-mail: kafedralogistika@mail.ru

Д.Э. Тарасов, аспирант, ФГБОУ ВО «Московский государственный университет путей сообщения Императора Николая II»

e-mail: detarasov@mail.ru

МОДЕЛИ ФОРМИРОВАНИЯ ЗАПАСОВ И РАСЧЁТА ЗАТРАТ НА ИХ ХРАНЕНИЕ В ЛОГИСТИЧЕСКИХ ЦЕНТРАХ

Цель: разработка моделей формирования запасов в логистических центрах и расчёта затрат на их хранение с учётом соотношения интенсивности завоза и вывоза грузов.

Методология: в моделях формирования запасов учитывается продолжительность хранения в зависимости от соотношения интервалов поставок и отгрузок за весь период логистического цикла: от момента начала поставок до отгрузки последней партии товара со склада; в моделях расчёта затрат на хранение запасов учитывается дискретный характер процесса их пополнения и расходования.

Результаты: предложены три вида моделей формирования запасов: сбалансированные поставки, избыточные поставки, поставки с предварительным накоплением. Для каждой модели формирования запасов предложены способы расчёта затрат на хранение товаров в запасе.

Выводы: разработанные модели могут применяться для планирования параметров поставки грузов в логистические центры, при которых обеспечивается минимальные совокупные затраты на транспортировку и хранение товаров на всех участках цепи поставок.

Ключевые слова: цепи поставок, логистические центры, терминалы, управление запасами, модели затрат на хранение товаров.

Введение

Современные научные разработки и практические решения в области доставки товаров потребителям ориентированы на сокращение всех видов затрат в цепях поставок, в том числе на хранение товаров в логистических центрах, транзитных терминалах и т.п. (далее – ЛЦ) [3, 9]. Несмотря на значительные расходы на хранение товаров в ЛЦ, для многих компаний по различным причинам нецелесообразно отказываться от этих услуг, при этом необходимо обеспечить максимальное снижение затрат на них. Соответствующие задачи должны решаться на стадии планирования цепей поставок товаров. В работах [4, 8] отмечается, что данная проблема является актуальной и для контейнерных перевозок. При выборе рационального решения по организации цепи поставок товаров с учётом затрат на их хранение в ЛЦ необходимо использовать адекватные модели формирования соответствующих затрат, учитывающие конкретные условия параметров поставок.

Вопросам формирования затрат на логистические операции в цепях поставок посвящены работы

отечественных и зарубежных авторов, например, [6, 12, 13] и др. Однако выполненный анализ многочисленных работ по данной теме показывает, что известные методики расчета затрат на хранение запасов в ЛЦ не в полной мере учитывают фактические условиях и особенности процессов формирования запасов (различные соотношения объёмов и периодичности поставок и отгрузок, дискретный характер накопления и расходования запасов на ЛП).

В данной работе предлагаются новые теоретические подходы к отображению механизма формирования запасов в ЛЦ, показана зависимость этого процесса от соотношения параметров завоза и отгрузки товаров, на основе которых разработаны новые модели расчёта затрат на хранение запасов в ЛЦ.

1. Варианты моделей расчёта затрат

Основные теоретические вопросы формирования запасов на ЛЦ и методические положения по расчёту объёмов запасов и продолжительности их нахождения на ЛЦ рассмотрены в работах [1, 5].

Динамика накопления и расходования объемов запасов на ЛЦ зависит от соотношения двух основных параметров поставок: разовых объемов завозимых и вывозимых в ЛЦ грузовых партий, а также периодичности (интервалов) разовых поставок. Например, распространенной является ситуация, когда на ЛЦ осуществляют завоз через относительно продолжительный период t_p значительных по объёму q_p грузов, а отгрузки осуществляются с относительно небольшими интервалами t_r и объёмами q_r грузовых партий. При таком соотношении параметров завоза и вывоза грузов на ЛЦ изначально будут сформированы запасы для дальнейшей их отгрузки в соответствии с заказами получателей [2].

Установлено, что из-за различий параметров завоза товаров на ЛЦ и их отгрузок из ЛЦ следует использовать три вида моделей расчёта объёмов

запасов и продолжительности периода их нахождения на ЛЦ.

Вариант модели расчёта выбирается в зависимости от значения показателя сбалансированности параметров поставок ε , равного отношению интенсивности завоза Y_p товаров на ЛЦ (т/дн.) к плановой интенсивности Y_r отгрузки товаров из ЛЦ (т/дн.) (рисунок 1).

$$\varepsilon = \frac{Y_p}{Y_r}. (1),$$

$$Y_p = \frac{q_p}{t_r}. (2),$$

$$Y_r = \frac{q_p}{t_r}. (3).$$

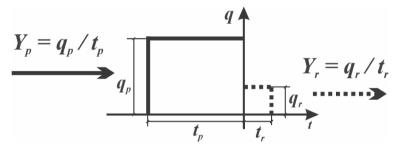


Рисунок 1. Иллюстрация входящего и исходящего грузопотока на ЛЦ

По условию общие объёмы поставок Q_p (т) и отгрузок Q_r (т) за соответствующие периоды поставок T_p и отгрузок T_r равны между собой:

$$Q_p = Q_r \tag{4}.$$

Однако в процессе поставок объём входящего потока может отличаться от объёма исходящего потока. Для соотнесения параметров входящего и исходящего потоков целесообразно использовать показатели интенсивности поставок и отгрузок, которые в общем виде рассчитываются через отношение объёма q к интервалу t поставок (отгрузок) [1].

При $\varepsilon = 1$ параметры поставок и отгрузок будут сбалансированы, так как запасов на ЛЦ в объёме завоза q_p будет достаточно для текущих отгрузок в объёме q_r до момента следующей поставки.

При $\varepsilon > 1$ завезенный на ЛЦ объём q_p товаров не будет израсходован до момента следующей поставки через период t_p , как следствие, на ЛЦ будут формироваться избыточные запасы в объёме $Q_{\rm sA}$. Соответственно после окончания завоза планового объёма Q_p отгрузки будут осуществляться из накопленных избыточных запасов $Q_{\rm sA}$ в течение периода ΔT_r .

При ε < 1 объём завозимых товаров q_p будет недостаточным для бесперебойной отгрузки товаров в течение периода t_p . Поэтому на ЛЦ должны быть предварительно накоплен запас в объёме Q_{s0} , из которого будут дополняться текущие поставки в объ-

ёме q_p не величину объёма q_{s0} , необходимого для текущих отгрузок товаров в объёме q_r .

2. Расчёт затрат на хранение запасов при сбалансированных поставках

Для моделирования динамики запасов на ЛЦ и расчета затрат на их хранение будем пользоваться величиной так называемого сбалансированного объема отгрузки q_{rp} , который при любых параметрах поставок должен обеспечивать безусловную отгрузку товаров из ЛЦ между двумя смежными поставками товаров на ЛЦ. Этот объём q_{rp} рассчитывается как произведение объёма текущих отгрузок q_r товаров из ЛЦ с интервалом t_r на их количество в течение стандартного отгрузочного цикла t_{rp} между двумя смежными поставками, равного по условию интервалу поставок t_p :

$$q_{rp} = q_r \cdot n_{rp} = q_r \cdot \frac{t_{rp}}{t_r}, \quad (T). \tag{5},$$

где n_{rp} – общее количество отгрузок в объёме q_r в течение периода t_{rp} :

$$n_{rp} = \frac{t_{rp}}{t_{r}} = \frac{t_{p}}{t_{r}},$$
 (ед.), (6)

при
$$t_{rp} = t_p$$
 (7)

Величина q_{rp} показывает, каким должен быть объём запаса на ЛЦ не зависимо от фактического объема поставки q_p , чтобы условия отгрузки това-

ров получателям (q_r, t_r) выполнялись в соответствии с плановыми параметрами в течение всего периода t_{rn} до момента следующей поставки товаров на ЛЦ.

При сбалансированных поставках, когда интенсивности входящего Y_p и исходящего Y_r грузопотоков равны между собой,

$$Y_p = Y_r, (8)$$

и показатель $\varepsilon = 1$, соответственно будут равны объем поставок q_p и сбалансированный объём отгрузок q_{rp} (рисунок 2):

$$q_{p} = q_{pp}, \quad (T).$$
 (9).

Рисунок 2. Механизм формирования и расходования запасов при сбалансированных поставках

На рисунке 2 для наглядности и компактности временные интервалы поставок t_p , T_p и их подписи смещены вправо к нулевой точке шкалы X, из фактически которой начинается отсчёт интервалов отгрузки t_r , T_r . В реальных условиях поставка товаров на ЛЦ начинается до начала их отгрузки из ЛП.

Вновь прибывший товар хранится на складе в течение периода t_r до момента следующей отгрузки, после которой уменьшается на qr и вновь храниться в течение периода t_r пока не будет полностью израсходован (рисунок 2). Поставка очередной партии груза в объёме q_p должна производиться в момент отгрузки последней партии товара из ЛЦ. Если q_p и qгр равны, то к моменту очередной поставки все запасы на ЛЦ должны быть израсходованы.

Очевидно, что общий объём отгрузки Q_r с учётом значений q_r и t_r за период T_r составит:

$$Q_r = q_r \frac{T_r}{t_r}$$
. (T). (10).

Затраты 3_{sp} на хранение сбалансированного объема отгрузки q_{rp} в запасе в течение периода t_{rp} , то есть до момента следующей поставки, рассчитываются с учётом убывающей динамики объема q_{rp} . Через каждый i-й ($i=1, n_{rp}$) период отгрузки tr величина q_{rp} будет уменьшаться на объём отгрузки q_r . Соответственно величина текущего запаса q_{si} рассчитывается по формуле:

$$q_{si} = q_{rp} - q_r \cdot (i-1), \quad (T).$$
 (11).

Затраты на хранение товаров 3_{si} в течение i-го периода t_r между двумя смежными отгрузками определяются как произведение объема q_{si} на про-

должительность его хранения t_r и соответствующий тариф S_s :

$$3_{si} = S_s \cdot t_r \cdot q_{si}, \quad \text{(py6.)}. \tag{12}.$$

Тогда совокупные затраты 3_{sp} на хранение запасов в объеме q_{rp} за период t_{rp} с учётом выражения (11) могут быть представлены в виде суммы:

$$\begin{split} & 3_{sp} = 3_{s1} + 3_{s2} + ... + 3_{sn} = S_s \cdot q_{s1} \cdot t_r + S_s \cdot t_r \cdot q_{s2} + ... + \\ & + S_s \cdot t_r \cdot q_{sn} = S_s \cdot t_r \cdot q_{rp} + S_s \cdot t_r \cdot \left(q_{rp} - q_r \right) + ... + S_s \cdot t_r \cdot \\ & \cdot \left(q_{rp} - q_r (n-1) \right) = S_s \cdot t_r \cdot \sum_{s=1}^{n_{rp}} q_{si} = S_s \cdot t_r \cdot q_{sp}, \quad \text{(py6.)}, \end{split}$$

где q_{sp} — суммарный объёмов текущих запасов q_{si} , находящихся в ЛЦ в течение каждого периода отгрузки t_r , за весь период t_{rp} .

Выражение (13) является убывающей арифметической прогрессией, в которой переменной величиной является объём запаса q_{si} для каждого i-го шага отгрузки. Для определения суммарного объёма запасов q_{sp} воспользуемся стандартной формулой арифметической прогрессии:

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2 \cdot a_1 - d \cdot (n-1)}{2} \cdot n,$$
 (14),

где a_1 — первый элемент арифметической прогрессии, по условию равный q_{rp} ; d — разность арифметической прогрессии, по условию равна q_r ; n — количество элементов прогрессии, равно n_{rp} .

Тогда суммарный объём запасов q_{sp} с использованием выражения (14) составит:

$$q_{sp} = \frac{2 \cdot q_{rp} - q_r \cdot \left(\frac{t_p}{t_r} - 1\right)}{2} \cdot \left(\frac{t_p}{t_r}\right) = \frac{2 \cdot q_{rp} - q_r \cdot \frac{t_p}{t_r} + q_r}{2} \cdot \left(\frac{t_p}{t_r}\right), \quad (15).$$

Принимая во внимание выражение (5), получим:

$$q_{sp} = \frac{2 \cdot q_{rp} - q_{rp} + q_r}{2} \cdot \left(\frac{t_p}{t_r}\right) = \frac{q_{rp} + q_r}{2} \cdot \left(\frac{t_p}{t_r}\right) = q'_{sp} \cdot \left(\frac{t_p}{t_r}\right), \quad (16),$$

где q'_{sp} — средний объём запаса товаров в ЛЦ в течение периода t_{rp} :

$$q'_{sp} = \frac{q_{rp} + q_r}{2}, \quad (T).$$
 (17),

а при сбалансированных поставках он также равен:

$$q'_{sp} = \frac{q_p + q_r}{2}, \quad (T).$$
 (18).

Подставляя (12) в (16) получим формулу для расчёта совокупных затрат 3_{sp} на хранение объёма q_{rp} в течение периода t_{rp} , т:

$$3_{sp} = S_s \cdot t_r \cdot q_{sp} = S_s \cdot t_r \cdot q'_{sp} \cdot \left(\frac{t_p}{t_r}\right) = S_s \cdot t_p \cdot q'_{sp}, \quad \text{(py6.).} \quad (19).$$

Тогда общие затраты 3_{sn} на хранение в запасе всех сбалансированных поставок в течение всего периода отгрузок T_r , равного периоду поставок T_p , рассчитываются по формуле:

$$3_{sn} = 3_{sp} \cdot n_{sp}$$
, (py6.). (20),

где n_{sp} — общее количество циклов отгрузок в сбалансированном объеме q_{rp} в течение всего периода T_r рассчитывается по формуле:

$$n_{sp} = \frac{T_r}{t_{rp}},$$
 (ед.), (21).

Для условия (8), когда T_r равно T_p , общее количество циклов отгрузок пѕр равно количеству циклов поставок n_p и может быть рассчитано через отношение общего объема поставок Q_p к объёму разовой поставки q_p :

$$n_{sp} = n_p = \frac{Q_p}{q_{rp}} = \frac{Q_p}{q_p},$$
 (ед.). (22).

Тогда выражение (20) может быть записано следующим образом:

$$3_{sn} = 3_{sp} \cdot n_{sp} = 3_{sp} \cdot \frac{T_r}{t_{rp}} = 3_{sp} \cdot \frac{Q_p}{q_p}, \text{ (руб.)}$$
 (23).

Общая продолжительность периода поставок T_p планового объёма Q_p , как правило, является заданной, но может быть рассчитана по формуле:

$$T_p = t_p \cdot n_p, \quad (\text{дн.}) \tag{24}.$$

Следует отметить, что в выражении (19) величина среднего объёма запаса q'_{sp} , рассчитываемого по формуле (18), будет отличаться от величины среднего объёма запаса q'_{sp}^* [10]:

$$q_{sp}^{\prime *} = \frac{q_{rp}}{2}, \quad (T).$$
 (25).

Аналогичный Уилсону подход к определению среднего запаса на складе приведен в работе Фор-

да В. Харриса [11], соответственно средний объём запаса q'_{sp}^* по (25) будет меньше, чем рассчитанный по (18), следовательно, полученное значение совокупных затрат 3_{sp} также будет меньше, чем по формуле (19). Выполненные оценки показывают, что значения затрат на хранение товаров в запасе, полученные по формулам (19) и (23), являются более близкими к величине фактических затрат предприятий, чем результаты с использованием формулы (25).

Ценность работ Ф. Харриса состоит в том, что он разработал широко известную модель расчёта оптимального размера запаса (Economic order quantity – EOQ). Однако, как совершенно верно подметил Donald Erlenkotter, модель EOQ была предложена в 1913 г., а получила она широкое распространение только во второй половине 20-го века [7].

3. Расчёт затрат на хранение запасов при избыточных поставках

Формирование избыточных запасов происходит при завозе товаров в объёме q_p , превышающем сбалансированный объём отгрузок q_{rp} :

$$q_p > q_{rp}. \tag{26}$$

Аналогичным образом соотносятся интенсивности входящего и исходящего потока:

$$Y_p > Y_r, \tag{27}$$

а показатель сбалансированности поставок будет больше единицы:

$$\varepsilon > 1.$$
 (28).

При условии (26) через период t_p на ЛЦ образуется избыточный запас в объёме q_{sh} (рис. 3), величина которого рассчитывается по формуле:

$$q_{s\Delta} = q_p - q_{rp} = q_p - q_r \cdot n_{rp} = q_p - q_r \cdot \frac{t_p}{t_r}, \quad (T). \quad (29).$$

После каждой очередной поставки находящийся на ЛЦ избыточный объём увеличивается на величину $q_{s\Delta}$ и хранится в течение периода поставки t_p до следующей поставки (рисунок 3). Общий объём накопления избыточных запасов $Q_{s\Delta}$ зависит от количества циклов поставок n_p и составит:

$$Q_{s\Delta} = q_{s\Delta} \cdot n_p, \quad (T). \tag{30}.$$

Ниже приведена взаимосвязь между различными видами объемов запасов при избыточных поставках:

$$Q_p = q_p \cdot n_p = Q_{rp} + Q_{s\Delta} = q_{s\Delta} \cdot n_p + q_{rp} \cdot n_p = Q_r, \quad (T) \quad (31),$$

где Q_{rp} — общий сбалансированный объём, который будет отгружен в течение всего периода поставок T_p :

$$Q_{rp} = q_{rp} \cdot n_p, \quad (T). \tag{32}.$$

При избыточных поставках весь объём груза Q_p

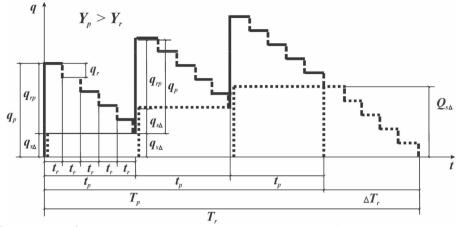


Рисунок 3. Механизм формирования и расходования запасов при избыточных поставках

будет завезён на ЛЦ досрочно, то есть с опережением относительно окончания периода отгрузки T_r на величину ΔT_r , которая рассчитывается по формуле:

$$\Delta T_r = T_r - T_n, \quad (\text{дн.}) \tag{33}.$$

Текущие отгрузки в течение периода ΔT_r будут осуществляться из накопленного избыточного запаса $Q_{\rm sa}$.

Для случая с избыточными запасами рассчитываются три вида затрат на хранение.

Во-первых, затраты 3_{sp} на текущее хранение сбалансированного объёма поставки q_{rp} , который покрывает потребности в текущих отгрузках товаров в течение периода t_{rp} до момента следующей поставки. Общие затраты 3_{sn} на хранение сбалансированного объема поставок q_{rp} за весь период поставок T_p рассчитываются по аналогии с выражениями (19) и (23) и с учётом (29):

$$3_{sn\Delta} = S_s \cdot t_p \cdot \left(\frac{q_{rp} + q_r}{2}\right) \cdot n_{p\Delta}, \text{ (py6.)}$$
 (34),

где $n_{p\Delta}$ — общее количество поставок при избыточных запасах, ед., может быть рассчитано по аналогии с выражением (22).

$$n_{s\Delta} = \frac{Q_p}{q_p}$$
, (ед.) (35).

Во-вторых, затраты $3_{s\Delta}$ на хранение избыточного объёма поставки $Q_{s\Delta}$ в запасе в течение всего периода его накопления — периода поставки T_p .

Затраты $3_{s\Delta}$ рассчитываются как возрастающая арифметическая прогрессия по аналогии с выражениями (14) и (23):

$$\begin{aligned} \boldsymbol{3}_{s\Delta} &= \boldsymbol{S}_{s} \cdot \boldsymbol{t}_{p} \cdot \left(\frac{2 \cdot \boldsymbol{q}_{s\Delta} + \boldsymbol{q}_{s\Delta} \cdot \left(\boldsymbol{n}_{p} - 1 \right)}{2} \right) \cdot \boldsymbol{n}_{p} = \\ &= \boldsymbol{S}_{s} \cdot \boldsymbol{t}_{p} \cdot \boldsymbol{n}_{p} \cdot \left(\frac{2 \cdot \boldsymbol{q}_{s\Delta} + \boldsymbol{q}_{s\Delta} \cdot \boldsymbol{n}_{p} - \boldsymbol{q}_{s\Delta}}{2} \right) = \\ &= \boldsymbol{S}_{s} \cdot \boldsymbol{T}_{p} \cdot \frac{\boldsymbol{q}_{s\Delta} \cdot \left(\boldsymbol{n}_{p} + 1 \right)}{2} = \boldsymbol{S}_{s} \cdot \boldsymbol{T}_{p} \cdot \left(\frac{\boldsymbol{Q}_{s\Delta} + \boldsymbol{q}_{s\Delta}}{2} \right), \quad \text{(py6.)}. \end{aligned}$$

В-третьих, затраты $3_{sr\Delta}$ на хранение избыточного объёма поставки $Q_{s\Delta}$ в течение периода его расходования ΔT_r , начиная с момента окончания поставок T_p и до момента окончания периода отгрузок T_r (рисунок 3).

Для расчета величины $3_{sr\Delta}$ используется формула убывающей арифметической прогрессии (14) с первым элементом арифметической прогрессии $Q_{s\Delta}$ и разностью прогрессии q_r :

$$\begin{aligned} & \mathcal{J}_{sr\Delta} = S_s \cdot t_r \cdot \left(\frac{2 \cdot Q_{s\Delta} - q_r \cdot (n_{r\Delta} - 1)}{2} \right) \cdot n_{r\Delta} = \\ & = S_s \cdot t_r \cdot n_{r\Delta} \cdot \left(\frac{2 \cdot Q_{s\Delta} - q_r \cdot n_{r\Delta} + q_r}{2} \right) = \end{aligned} \tag{37}$$

$$S_{s} \cdot \Delta T_{r} \cdot \left(\frac{2 \cdot Q_{s\Delta} - Q_{s\Delta} + q_{r}}{2} \right) = S_{s} \cdot \Delta T_{r} \cdot \left(\frac{Q_{s\Delta} + q_{r}}{2} \right), \text{ (py6.}$$

где $n_{r\Delta}$ — общее количество циклов отгрузок товаров из логистического центра за период ΔT_r :

$$n_{r\Delta} = \frac{\Delta T_r}{t_r} = \frac{Q_{s\Delta}}{q_r}, (ед.)$$
 (38).

Тогда для поставок с избытком общие затраты на хранение товаров в запасе $3_{sp\Delta}$ на ЛЦ определяются суммированием рассмотренных выше видов затрат:

$$3_{sp\Delta} = 3_{sn\Delta} + 3_{s\Delta} + 3_{sr\Delta}, \text{ (py6.)}$$
 (39).

4. Расчёт затрат на хранение запасов при предварительных поставках

Предварительное накопление запасов необходимо в случае, когда объём текущего пополнения q_p является недостаточным для удовлетворения плановых отгрузок в объёме q_{rp} из ЛЦ в течение периода между смежными поставками, то есть:

$$q_p < q_{rp}. \tag{40}.$$

Соответственно интенсивность входящего потока будет меньше интенсивности исходящего (рисунок 4):

$$Y_p < Y_r, \tag{41},$$

а показатель сбалансированности поставок, как следствие, будет меньше единицы:

$$\varepsilon < 1.$$
 (42).

При условии (40) для бесперебойной отправки товаров из ЛЦ в течение каждого отгрузочного цик-

ла на склад должен быть предварительно завезен товар в объеме q_{s0} , который дополнит объём текущей поставки q_{p} до требуемой величины q_{rp} :

$$q_{s0} = q_{rp} - q_p = q_r \cdot n_{rp} - q_p = q_r \cdot \frac{t_p}{t_r} - q_p, \quad \text{(T)}$$

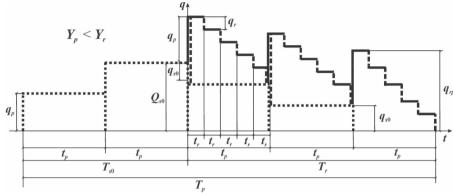


Рисунок 4. Механизм формирования и расходования запасов для предварительного накопления

Общий объём Q_{s0} предварительно накопленных (завезенных до начала отгрузки) на ЛЦ грузов зависит от общего количества синхронных поставок n_{p0} , которые будут выполняться после начала отгрузок в течение всего периода T_r (рисунок 4). Величина n_{p0} рассчитывается по формуле:

$$n_{p0} = \frac{T_r}{t_n}$$
, (ед.). (44).

С учётом (43) и (44) совокупный объём предварительного накопления Q_{s0} может быть рассчитан по формуле:

$$Q_{s0} = q_{s0} \cdot n_{p0} = (q_{rp} - q_p) \cdot \frac{T_r}{t_p} =$$

$$= q_r \frac{T_r}{t_r} - q_p \frac{T_r}{t_p} = Q_r - q_p \frac{T_r}{t_p}, \quad (T)$$
(45).

Отсюда следует, что количество поставок n_{p0} дополнительно к выражению (44) может быть также рассчитано следующим образом:

$$n_{p0} = \frac{Q_{s0}}{q_{s0}},$$
 (ед.) (46).

При организации поставок с предварительным накоплением запасов расчёт затрат на их хранение производится в четыре этапа. На первом этапе рассчитываются затраты на хранение 3_{50} предварительно завозимых товаров в объёме поставки q_p в течение периода накопления T_{50} , пока не будет сформирован запас в объёме Q_{50} .

Чтобы обеспечить наличие на ЛЦ предварительных запасов в объёме Q_{s0} до начала их отгрузки получателям, поставка должна осуществляться с опережением (предварительно) на величину T_{s0} , которая определяется по формуле:

$$T_{s0} = n_{s0} \cdot t_p$$
, (дн.) (47),

где T_{s0} — общая продолжительность предварительного завоза товаров на ЛЦ в объёме Q_{s0} , достаточном для бесперебойной отгрузки товаров в течение всего периода отгрузки T_r , дни; n_{s0} — общее количество предварительных поставок в объёме q_p для формирования предварительного запаса в объёме Q_{s0} :

$$n_{s0} = \frac{Q_{s0}}{q_s}$$
, (ед.) (48).

Соответственно общее время поставки T_p будет состоять из двух периодов времени:

$$T_p = T_r + T_{s0},$$
 (дн.) (49).

Для расчёта затрат на хранение 3_{s0} предварительно завозимых товаров используется формула возрастающей арифметической прогрессии с разностью прогрессии q_p и количеством элементов n_{s0} :

$$3_{s0} = S_{s} \cdot t_{p} \cdot \left(\frac{2 \cdot q_{p} + q_{p} \cdot (n_{s0} - 1)}{2}\right) \cdot n_{s0} =
= S_{s} \cdot t_{p} \cdot \left(\frac{2 \cdot q_{p} + q_{p} \cdot Q_{s0} / q_{p} - q_{p}}{2}\right) \cdot \frac{T_{s0}}{t_{p}} =
= S_{s} \cdot T_{s0} \cdot \left(\frac{q_{p} + Q_{s0}}{2}\right), \text{ (py6.)}$$

На втором этапе рассчитываются затраты 3_{sn0} на текущее хранение сбалансированного объёма q_{rp} между двумя смежными поставками в течение всего периода отгрузки T_r .

Сбалансированный объём отгрузки q_{rp} формируется из объёма текущих поставок q_p и объёма q_{s0} , как части предварительно накопленного запаса Q_{s0} , рассчитываемого по формуле (43):

$$q_{rp} = q_{s0} + q_p, \quad (T)$$
 (51).

Тогда затраты 3_{sn0} на хранение сбалансированного объема q_{rp} в течение всего периода отгрузок T_r должны учитывать общее количество синхронных с отгрузками поставок n_{p0} :

$$\begin{aligned} &\boldsymbol{3}_{sn0} = \boldsymbol{S}_{s} \cdot \boldsymbol{t}_{p} \cdot \left(\frac{2 \cdot \boldsymbol{q}_{rp} - \boldsymbol{q}_{r} (\boldsymbol{n}_{rp} - 1)}{2} \right) \cdot \boldsymbol{n}_{p0} = \\ &= \boldsymbol{S}_{s} \cdot \boldsymbol{t}_{p} \cdot \left(\frac{2 \cdot \boldsymbol{q}_{rp} - \boldsymbol{q}_{r} \cdot \boldsymbol{q}_{rp} / \boldsymbol{q}_{r} + \boldsymbol{q}_{r}}{2} \right) \cdot \boldsymbol{n}_{p0} = \end{aligned} \tag{52}.$$

$$= S_s \cdot t_p \cdot \left(\frac{q_{rp} + q_r}{2}\right) \cdot \frac{T_r}{t_p} = S_s \cdot T_r \cdot \left(\frac{q_{rp} + q_r}{2}\right), \text{ (py6.)}$$

На третьем этапе определяются затраты 3_{sr0} на хранение предварительно накопленного объёма Q_{s0} , который через каждый интервал t_p в течение всего периода отгрузки T_r будет уменьшаться на величину q_{s0} для дополнения объёма поставки q_p до сбалансированного объёма q_{rp} :

$$\begin{split} & \mathcal{J}_{sr0} = S_{s} \cdot t_{p} \cdot \left(\frac{2 \cdot Q_{s0} - q_{s0} \cdot (n_{p0} - 1)}{2} \right) \cdot n_{po} = \\ & = S_{s} \cdot t_{p} \cdot \left(\frac{2 \cdot Q_{s0} - q_{s0} \cdot Q_{s0} / q_{s0} + q_{s0}}{2} \right) \cdot \frac{T_{r}}{t_{p}} = \\ & = S_{s} \cdot T_{r} \cdot \left(\frac{Q_{s0} + q_{s0}}{2} \right), \quad \text{(py6.)} \end{split}$$

На четвёртом этапе все выше рассчитанные затраты суммируются, что даёт величину совокупных затрат на хранение запасов в ЛЦ для случая с предварительным накоплением запасов:

$$3_{s0} = 3_{s0} + 3_{sn0} + 3_{sr0}, (py6.)$$
 (54).

Выводы

Представленные в статье аналитические выражения расчёта затрат на хранение грузов в ЛЦ

учитывают дискретный характер завоза и отгрузки товаров и ориентированы на детерминированные условия осуществления процессов завоза и вывоза грузов. В то же время приведённые расчётные модели могут быть использованы в качестве основы для нахождения затрат на хранение запасов и для стохастических условий с некоторыми доработками. Выбор конкретных моделей расчёта производится на основе оценки фактических параметров поставок и отгрузки товаров из ЛЦ. Для этих рекомендуется использовать показатель сбалансированности параметров поставок. Предлагаемая методология структурирования процесса формирования запасов позволяет не только повысить точность расчётов по сравнению с существующими методами, но и является достаточно простой для практического приме-

Основная область применения разработанных методов связана с созданием имитационных моделей динамики запасов на ЛЦ, которые могут быть интегрированы в используемые на ЛЦ информационные системы управления предприятием. Если на практике есть возможность изменять параметры поставок, например, использовать различные виды транспорта и типы подвижного состава с разной вместимость, скоростью движения и тарифами, в том числе на различных участках цепи поставок, тогда данные модели могут быть использованы для оптимизации совокупных затрат на доставку грузов от отправителя до получателя, в том числе затрат на транспортировку и хранение товаров по всем звеньям цепи поставок. Понимание специалистами, ответственными за принятие логистических решений, фундаментальных факторов и механизмов формирования запасов на логистических центрах и затрат на их хранение обеспечивает дополнительный эффект в виде повышения эффективности управленческих процессов.

Литература

- 1. Ларин, О.Н. Моделирование параметров поставок товаров через терминалы / О.Н. Ларин, С.Б. Лёвин, З.В. Альметова, И.А. Горяева // Вестник Южно-Уральского государственного университета. Серия: экономика и менеджмент. 2015. Т. 9. № 1. С. 185–190.
- 2. Ларин, О.Н. Научные основы организации транзитных терминалов: монография / О.Н. Ларин, Л.Б. Миротин, Н.К. Горяев, З.В. Альметова. Челябинск: Издательский центр ЮУрГУ, 2014. 171 с.
- 3. Модели и методы теории логистики / под ред. В.С. Лукинского. Санкт-Петербург: Питер, 2003. 176 с.
 - 4. Резер, С.М. Контейнеризация грузовых перевозок / С.М. Резер. Москва: ВИНИТИ РАН, 2012. 678 с.
- 5. Резер, С.М. Модели расчета затрат на хранение товаров в логистических центрах / С.М. Резер, О.Н. Ларин, Ф. Венде, Д.Э. Тарасов // Транспорт: наука, техника, управление. 2016. № 4. С. 3–8.
- 6. Резер, С.М. Логистические методы управления грузопотоками в материально-техническом обеспечении железных дорог / С.М. Резер, О.Н. Ларин // Транспорт: Наука, Техника, Управление. 2015. № 9. С. 3–6.
- 7. Donald Erlenkotter. Ford Whitman Harris and the Economic Order Quantity Model / Erlenkotter Donald // Operations Research. Vol. 38. Vol. 6. pp. 937–946.
- 8. Enrique Martin Alcaldea, Kap Hwan Kimb, Sergi Saurí Marchána. Optimal space for storage yard considering yard inventory forecasts and terminal performance / Martin Alcaldea Enrique, Hwan Kimb Kap, Sauri Marchana Sergi // Transportation Research Part E: Logistics and Transportation Review. Vol. 82. pp. 101–128.

- 9. De Jong, G. A micro-simulation model of shipment size and transport chain choice / G. de Jong, M. Ben-Akivab // Transportation Research Part B: Methodological. Vol. 41. Iss. 9. Nov. 2007. pp. 950–965.
- 10. Hadley, G. Analysis of inventory systems. Prentice / G. Hadley, T.M. Whitin. Hall, Inc. Englewood Cliffs, New Jersey, 1963. 452 p.
- 11. FORD W. HARRIS (1913) HOW MANY PARTS TO MAKE AT ONCE. Reprinted from Factory, The Magazine of Management [Electronic resource] / W. HARRIS FORD Access: //logist.ru/sites/default/files/users/user1/files/eoqmodel-originalpaper.pdf (reference date: 20.03.2017).
- 12. Resat, Hamdi G. Design and operation of intermodal transportation network in the Marmara region of Turkey / Hamdi G. Resat, Metin Turkay // Transportation Research Part E: Logistics and Transportation Review. Vol. 83. Nov. 2015. pp. 16–33.
- 13. Liua, W. A scheduling model of logistics service supply chain based on the mass customization service and uncertainty of FLSP's operation time / W. Liua, Q. Wanga, Q. Maob, Sh. Wanga, D. Zhua // Transportation Research Part E: Logistics and Transportation Review. 2015. Vol. 83. pp. 189–215.